Regulation of ornithine utilization in Pseudomonas aeruginosa (PAO1) is mediated by a transcriptional regulator, OruR.

نویسندگان

  • M D Hebert
  • J E Houghton
چکیده

We have used transpositional mutagenesis of a proline auxotroph (PAO951) to isolate an ornithine utilization (oru) mutant of Pseudomonas aeruginosa (PAO951-4) that was unable to use ornithine efficiently as the sole carbon and nitrogen source. DNA sequence analysis of the inactivated locus confirmed that the transposon had inserted into a locus whose product demonstrated significant primary sequence homology to members of the AraC family of transcriptional activators. DNA mobility shift assays affirmed this potential regulatory function and indicated that the inactivated gene encodes a transcriptional regulator, which has been designated OruR. In trying to define the ornithine utilization phenotype further, a similar inactivation was engineered in the wild-type strain, PAO1. The resulting isolate (PAO1R4) was totally unable to use ornithine as the sole carbon source. Despite the intensified phenotype, this isolate failed to demonstrate significant changes in any of the catabolic or anabolic enzymes that are known to be subject to regulation by the presence of either ornithine or arginine. It did, however, show modified levels of an enzyme, ornithine acetyltransferase (OAcT), that was previously thought to have merely an anaplerotic activity. Definition of this oruR locus and its effects upon OAcT activity provide evidence that control of ornithine levels in P. aeruginosa may have a significant impact upon how the cell is able to monitor and regulate the use of arginine and glutamate as sources of either carbon or nitrogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different responses of pyoverdine genes to autoinduction in Pseudomonas aeruginosa and the group Pseudomonas fluorescens-Pseudomonas putida.

We investigated the regulation of the psbA and pvdA pyoverdine biosynthesis genes, which encode the L-ornithine N(5)-oxygenase homologues in Pseudomonas strain B10 and Pseudomonas aeruginosa PAO1, respectively. We demonstrate that pyoverdine(B10), as the end product of its biosynthetic pathway, is a key participant of the control circuit regulating its own production in Pseudomonas strain B10. ...

متن کامل

Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa Carbon Catabolite Repression

Carbon Catabolite repression (CCR) allows a fast adaptation of Bacteria to changing nutrient supplies. The Pseudomonas aeruginosa (PAO1) catabolite repression control protein (Crc) was deemed to act as a translational regulator, repressing functions involved in uptake and utilization of carbon sources. However, Crc of PAO1 was recently shown to be devoid of RNA binding activity. In this study t...

متن کامل

Identification of an HptB-mediated multi-step phosphorelay in Pseudomonas aeruginosa PAO1.

We herein demonstrate that the hybrid sensor PA1611 carries out specific signal transduction, through HptB (PA3345), to the response regulator PA3346 in Pseudomonas aeruginosa PAO1. As assessed by phenotypic changes in the hptB deletion mutant, the pathway is likely to be involved in the regulation of flagellar activity, the chemotaxis response, twitching motility, and biofilm formation in the ...

متن کامل

Divergent structure and regulatory mechanism of proline catabolic systems: characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein.

Pseudomonas aeruginosa PAO1 utilizes proline as the sole source of carbon and nitrogen via a bifunctional enzyme (the putA gene product) that has both proline dehydrogenase (EC 1.5.99.8) and pyrroline 5-carboxylate dehydrogenase (EC 1.5.1.12) activities. We characterized the pruR-putAP loci encoding the proline catabolic system of this strain. In contrast to the putA and putP (encoding proline ...

متن کامل

In silico Analysis and Molecular Modeling of RNA Polymerase, Sigma S (RpoS) Protein in Pseudomonas aeruginosa PAO1

Background: Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. The rpoS (RNA polymerase, sigma S) gene encodes sigma-38 (σ38, or RpoS), a 37.8 kDa protein in Pseudomonas aeruginosa (P. aeruginosa) strains. RpoS is a central regulator of the general stress response and operates in both retroa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 24  شماره 

صفحات  -

تاریخ انتشار 1997